Dynamic Photonic Crystal Superlattices

C. Neff, W. Park*, and C. J. Summers

School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA

*Department of Electrical & Computer Engineering, University of Colorado, Boulder, CO

LEOS Conference 2003
Tuscon, Arizona
October 28, 2003
Outline

- Introduction/Motivation
- Structure & method of analysis
- 2D slab triangular lattice
 - Tunability with electo-optic materials
- New concept:
 - Superlattice photonic crystal
 - Refraction behavior
 - Switching effects
- Summary
- Acknowledgements
Introduction/Motivation

- Fabrication of 2D photonic crystals not as complicated as 3D
- Integration onto opto-electronic systems directly on common substrate
- Large refraction effects (superprism) for beam steering, signal processing, demultiplexing
- Investigate methods to electro-optically tune these effects
 - Infiltrate with electro-optical or nonlinear materials (eg. liquid crystal)
 - Tunable refraction
 - Switching
2D Slab configuration suspended air, thickness = 0.5\(a\)

3-D Finite difference time domain (FDTD) calculations with:
- one mirror boundary
- one perfectly matched layer (PML) boundary
- four periodic boundaries

Triangular lattice of holes

Fill holes with electro-optic materials
- Dynamic modification of band structure
Triangular Lattice

Holes filled with LC

- $1.5 \leq n \leq 2.1$
- Silicon slab, $n=3.46$
- Even mode

'Cones shaped' curve

Γ

$\omega_n=0.36$

$r=0.3a$

$n_{LC}=1.5$
Refraction in PCs

- Refraction angle determined by dispersion curve
- Conservation of tangential wave vector component, $k_{//}$, at the interface
- Final direction of travel is normal to the dispersion curve at intersection
- Tunability ~7° at 13° incidence
- Range of operating angles 0° to ~18°
- As Δn is increased
 - Tip of cone is cut off by the light cone
 - Thus at small incident angles, modes are decaying

Incident vs Refraction Angle

$\Delta n =$

- 0.0
- 0.2
- 0.4
- 0.8
New Idea: Alternating Addressing Scheme

- Address alternating rows of holes individually instead of homogeneously
- Creates superlattice with new Brillouin Zone shape
- More control over structure
- Electrical or optical biasing

$\Delta n =$ difference between refractive indices of the holes

$V+$ $V+0$ $V+$

$V+0$ $V+0$
Photonic Crystal Superlattice

Need a larger unit cell with two atom basis

Consequent Brillouin zone

New labeling scheme for symmetry points

LEOS, 28 October 2003

Georgia Institute of Technology
Superlattice Effect on Band Structure

- ‘Artificial’ Superlattice ($\Delta n=0$ between rows) to test calculation
- Bands translated according to new BZ scheme
- Results valid \rightarrow band gap same, shape of bands remain intact except for some translations introduced by the superlattice

LEOS, 28 October 2003

Georgia Institute of Technology
Superlattice Effect on Dispersion Diagram

- Additional periodicity changes shape of 1st Brillouin Zone
- No longer 6-fold symmetric
- When compared to homogeneous case, BZ appears ‘folded’ inward due to translation of bands
- Outcoupler/switch

Arrows indicate translations of curves

- $\omega_n = 0.34$

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Regular lattice</td>
</tr>
<tr>
<td>Orange</td>
<td>Superlattice</td>
</tr>
<tr>
<td>Red</td>
<td>Cutoff circle</td>
</tr>
</tbody>
</table>
Band Shift with Change in Δn for SL

Photonic Bands of 2D Slab SL-PC $\Delta n=0.1$

- $n_{LC}=1.5$ for one row
- $1.5 < n_{LC} < 2.1$ for second row
- Difference in n between rows is Δn
- Bands shift to lower frequency with greater Δn.
- Separation between translated bands widen.

$\Delta n=0.6$

Photonic Bands of 2D Slab SL-PC $\Delta n=0.6$

- $\phi_n=0.3545$
Evolution of Dispersion Curves

As Δn is increased, the separation between certain modes in the BZ widen.

- As Δn is increased, the 3rd band intersects the isofrequency line.

- Mode disappears

- Gap widens

- Mode 1

- Mode 2

- 3rd band

LEOS, 28 October 2003
Refraction Angle (Mode 1)

- Large tunability at negative incident angles, >50° at -20° for \(\Delta n=0.5 \)

\(\Delta n=0.3 \)

Input vs. Refraction Angle (Mode 1)

Incident Angle (degrees)

Refraction Angle (degrees)

\(\Delta n=0.1 \)
\(\Delta n=0.2 \)
\(\Delta n=0.3 \)
\(\Delta n=0.4 \)
\(\Delta n=0.6 \)

>50°

LEOS, 28 October 2003
Refraction Angle (Mode 2)

- Decaying mode
- Propagating mode

\[\Delta n = 0.3 \]

Input vs. Refraction Angle (Mode 2)

- Cutoff at light cone
- \(\Delta n = 0.2 \)
- \(\Delta n = 0.3 \)
- \(\Delta n = 0.4 \)
- \(\Delta n = 0.6 \)

- Tunability approaches 10°
- Limited range of angles due to light cone and BZ edge

LEOS, 28 October 2003

Georgia Institute of Technology
Switch is very sensitive to small changes in $\Delta n \sim 0.005$

- Behavior comes from 2nd band in the band diagram
- Arrows indicate movement of dispersion curve with increasing Δn.

LEOS, 28 October 2003

Georgia Institute of Technology
Summary

- 2D slab LC infiltrated regular triangular lattice
 - Beam steering approx. 10° with ~15% change in n.
- New superlattice configuration proposed by additional index modulation
 - Creates new allowed modes and drastic changes in dispersion
- New functionality to control optical properties
 - Improved beam steering >50°
 - Directional dependent switching, outcoupling
- Further studies required
 - Optimization of hole size & slab thickness
 - Superprism effects
 - Integration of fast non-linear materials for optical signal processing
Acknowledgements

- Supported by MURI program from ARO
- Jeff King
- Tsuyoshi Yamashita
- Davy Gaillot